2018 IEEE 14th International Conference on Solid-State and Integrated Circuit Technology

SICT-2018

JAPAN

Data Convertor II

17:30 – 17:45, Nov. 2, Fri.

ROOM H

Oct. 31- Nov. 3, 2018

Huangdao Sheraton Hotel, Qingdao, China

S38-7

Integral-type Time-to-Digital Converter

Yuto Sasaki, Haruo Kobayashi Gunma University

Kobayashi Lab. Gunma University

Motivation

TDC Architectures with NO delay lines

- for higher time resolution
- to avoid PVT variations of delay lines:
 - Process
 - Voltage
 - Temperature

Conventional TDC

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Time-to-Digital Converter

Time-to-Digital Converter (TDC) :

measures timing difference between two input signals as a digital code

Comparison

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Probabilistic Measurement

Proposed TDC Principle (1/3)

Sampling a square wave with input time difference τ / reference period T duty cycle

$$\lim_{L \to \infty} \frac{K}{L} = \frac{\tau}{T}$$

Proposed TDC Principle (2/3)

Square wave duty cycle depends on input time difference τ

Proposed TDC Principle (3/3)

Acquiring more data improves time resolution

Proposed TDC Architecture

Oscilloscope-Trigger Circuit (1/2)

Output starts to oscillate at rising edge timing of input from phase 0

[1] M. Nelson (Tektronics)

"A New Technique for Low-Jitter Measurements Using Equivalent-Time Sampling Ocilloscope" Automatic RF Techniques Group 56th Measurement (Dec. 2000)

Oscilloscope-Trigger Circuit (2/2)

Track mode:

$$V_{out} = \sin(\omega t + 4\pi/3) \{\sin \omega t - \sin(\omega t + 2\pi/3) + \sin \omega t \{\sin(\omega t + 2\pi/3) + \sin(\omega t + 4\pi/3)\} + \sin(\omega t + 2\pi/3) \{\sin(\omega t + 2\pi/3) + \sin(\omega t + 4\pi/3)\} = 0$$

Hold mode:

$$V_{out} = \sin(\omega t + 4\pi/3) \{\sin \omega t_0 - \sin(\omega t_0 + 2\pi/3) + \sin \omega t \{\sin(\omega t_0 + 2\pi/3) + \sin(\omega t_0 + 4\pi/3)\} + \sin(\omega t + 2\pi/3) \{\sin(\omega t_0 + 2\pi/3) + \sin(\omega t_0 + 4\pi/3)\} = ((3\sqrt{3})/2) \sin(\omega (t - t_0))$$

Proposed TDC Operation (1/3)

STEP1: Holding the input time difference τ as phase difference

Proposed TDC Operation (2/3)

STEP2: Making the square wave with τ / T duty cycle

Proposed TDC Operation (3/3)

STEP3: Counting the ratio of the sampling points

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Equivalent-Time Sampling

Higher time resolution than sampling clock period

Waveform Missing

Sampling points must be dispersed uniformly

Data Acquisition Condition

$$T_{CLK} = ? \times T_{sig}$$

Waveform Missing Condition

Sampling points move little \implies Requires long time

Highly Efficient Condition

Sampling points are dispersed uniformly through measurement

Golden Ratio Sampling

All sections are divided by golden ratio

Max / Min distances = φ or φ^2 const.

Time Resolution

Max & Min distances between neighbor points vs. Total Number of Data

Max & Min distances decreases x 1/Φ every Fibonacci numbers

Time resolution improves about 1 / Total Number of data

Proposed TDC Data Acquisition

Simulation Result

Acquiring more data improves time resolution

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Jitter Effects

Jitter of w1 & w2 affects period & duty of $D1 \cdot \overline{D2}$

Simulation Result (1/2)

Maximum Error vs. Total Number of Data

Simulation Result (2/2)

Maximum Error vs. Total Number of Data

Outline

- Introduction
- Proposed TDC Architecture and Operation
- Highly Efficient Data Acquisition Condition
- Jitter Effects
- Summary

Summary

- Proposed integral-type TDC:
 - fine time resolution
 - no need for calibration
- Highly Efficient Data Acquisition Condition:
 - Sampling clock frequency / measured signal frequency
 - = Golden ratio
- Robust for jitter

Appendix

Deterministic Measurement

P: Maximum number of total measurable sampling points

Golden Ratio

$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \cdots$$

36

Fibonacci Number

$$F_0 = 0$$

$$F_1 = 1$$

$$F_{n+2} = F_n + F_{n+1}$$

$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \cdots$

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.6180339887 \dots = \varphi$$